Surname

Centre Number Candidate Number

GCE AS/A level

1091/01

CHEMISTRY – CH1

A.M. THURSDAY, 9 January 2014

1 hour 30 minutes

		For Examiner's use only		
		Question	Maximum Mark	Mark Awarded
	Section A	1.5.	10	
	Section B	6.	8	
ADDITIONAL MATERIALS		7.	15	
In addition to this examination paper, you will ne	eed a:	8.	19	
 copy of the Periodic Table supplied by WJEC 	C.	9.	18	
Refer to it for any relative atomic masses yo	ou require.	10.	10	
		Total	80	

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions in the spaces provided.

Section B Answer **all** questions in the spaces provided.

Candidates are advised to allocate their time appropriately between **Section A (10 marks)** and **Section B (70 marks)**.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The *QWC* label alongside particular part-questions indicates those where the Quality of Written Communication is assessed.

If you run out of space, use the continuation page(s) at the back of the booklet, taking care to number the question(s) correctly.

Examiner only **SECTION A** Answer all questions in the spaces provided. 1. An element, X, has an atomic number of 9 and forms an ion X⁻. State which **one** of the following shows the numbers of protons and electrons in this ion. [1] protons electrons Α 8 9 В 9 8 С 9 9 9 10 D 2. State which one of the following shows the mass of aluminium that contains the same number of atoms as there are molecules in 11.0 g of carbon dioxide, CO₂. [1] Α 6.75g 13.5g В С 27.0 g D 54.0g 3. The isotope ³²P is radioactive. It decays by β -emission and has a half-life of 14 days. (a) State what is meant by β -emission. [1] Give the mass number and symbol of the atom formed by the loss of one β -particle from (b) an atom of ³²P. [1] State what is meant by the term half-life. [1] (C) Calculate how long it will take a sample of ³²P to decay from 8 g to 1 g. (d) [1] Time taken = days

2

4. Study the following energy cycle.

Use the values in the table below to calculate the enthalpy change of reaction, ΔH^{\odot} .

Substance	Enthalpy change of combustion, $\Delta H_{c}^{-}/ kJ mol^{-1}$
carbon	-394
hydrogen	-286
ethane	-1560

© WJEC CBAC Ltd.

Examiner only

[2]

 $1091 \\ 010003$

	Т	
5.	Silver tarnishes because it reacts with hydrogen sulfide in the air to form silver sulfide.	Examiner only
	A 1.24 g sample of silver sulfide contains 0.16 g of sulfur. Calculate the empirical formula of this compound. Show your working . [2]	
	Empirical formula	
	Section A Total [10]	

Examiner only

(b) Another element in Group 7 is bromine, Br.

Its mass spectrum shows that bromine has two naturally-occurring isotopes. The abundance of each isotope is given below.

Isotope	Percentage abundance/%
⁷⁹ Br	50.69
⁸¹ Br	49.31

Calculate the relative atomic mass of bromine, giving your answer to **four** significant figures. [2]

Relative atomic mass =

Total [8]

- Examiner only
- 7. Oxygen can be produced in the laboratory by the decomposition of hydrogen peroxide.

 $2H_2O(I) + O_2(g)$ $2H_2O_2(aq)$

Trystan carried out experiments to study the effect of using two metal oxides, A and B, to catalyse the reaction. He used 0.5g of each metal oxide and diluted 10 cm^3 of a hydrogen peroxide solution with 90 cm^3 of water in each case. Following dilution the solutions were kept at a constant temperature of 35 °C throughout the experiment.

He plotted his results on the graph shown below.

Outline a suitable method, including essential apparatus, for carrying out an experiment (a) to obtain these results. You may include a diagram if you consider it helpful. [4]

	(4004.04)	 Turn over

(b)	State, giving a reason, which oxide is the more efficient catalyst.	[1]	iner y
(C)	In the experiment with oxide A , calculate the volume of oxygen evolved (i) during the first minute,	[1]	
	(ii) during the third minute.	[1]	
(d)	Explain the difference between the answers in (c)(i) and (c)(ii).	[2]	
(e)	Give a reason why the total volume of oxygen obtained in the two experiments is same.	he [1]	
(f)	If Trystan repeated the experiment using 5 cm ³ of the original hydrogen peroxide solut diluted with 95 cm ³ of water, state the final volume of oxygen that would be evolved.	on [1]	

 (g) If he carried out the experiments at 45 °C instead of 35 °C, state what effect this would have on the time required to obtain the final volume of oxygen. Use collision theory to explain your answer. [3] QWC [1] 	iner ly
· · · · · · · · · · · · · · · · · · ·	
Total [15]	160

(a)	Give the full electronic configuration of a nitrogen atom and use this to describe the way in which electrons are arranged in atoms. [4] QWC [1]
(b)	Describe the main features of the atomic emission spectrum of hydrogen in the visible region. Explain how these features arise and how their interpretation provides evidence for energy levels in the atom. [6]
(b)	Describe the main features of the atomic emission spectrum of hydrogen in the visible region. Explain how these features arise and how their interpretation provides evidence for energy levels in the atom. [6]
(b)	Describe the main features of the atomic emission spectrum of hydrogen in the visible region. Explain how these features arise and how their interpretation provides evidence for energy levels in the atom. [6]
(b)	Describe the main features of the atomic emission spectrum of hydrogen in the visible region. Explain how these features arise and how their interpretation provides evidence for energy levels in the atom. [6]
(b)	Describe the main features of the atomic emission spectrum of hydrogen in the visible region. Explain how these features arise and how their interpretation provides evidence for energy levels in the atom. [6]
(b)	Describe the main features of the atomic emission spectrum of hydrogen in the visible region. Explain how these features arise and how their interpretation provides evidence for energy levels in the atom. [6]
(b)	Describe the main features of the atomic emission spectrum of hydrogen in the visible region. Explain how these features arise and how their interpretation provides evidence for energy levels in the atom. [6]

(i	i)	Hydrogen has Explain why l	s a first ioni nelium has	sation energ a higher first	y of 1312 kJ ionisation e	J mol ^{−1} . energy than hydrogen.	[2]
 (ii	i)	Beryllium and Explain why b	l magnesiu peryllium ha	m are both ir as a higher fi	Group 2 of st ionisation	f the Periodic Table. n energy than magnesium.	[2]
 (iii	i)	The table bel	ow gives th	e first three i ion energy/k	onisation er J mol ⁻¹	nergies for boron and potassi	ium.
		Element	1st	2nd	3rd		
		В	800	2420	3660	_	
		K	419	3051	4412		
		I Sugges	st why comp	oounds conta	iining B ³⁺ io	ons are unlikely to exist.	[1]
		II Write a	n equation	to represent	the second	l ionisation energy of potassi	um. [1]
		III State h of potas	ow the first ssium.	three ionisati	on energies	of calcium would differ from	those [2]
						Tota	1 [10]

State what is meant by the term standard molar enthalpy change of formation.

9.

(a)

Examiner only

[2]

Write an equation to represent the standard molar enthalpy change of formation, (b) (i) ΔH_{f}^{\oplus} , of H₂O(g). [1] The standard molar enthalpy change of formation, $\Delta H\frac{\Phi}{f}$, of $H_2O(g)$ is -242 kJ mol⁻¹. (ii) Using this value and the average bond enthalpies given in the table below, calculate the average bond enthalpy of the O — H bond in H_2O . [2] Average bond enthalpy/kJ mol⁻¹ Bond H - H436 0 = 0496 Average bond enthalpy of O - H bond = kJ mol⁻¹ (C) Hydrogen has been proposed as a possible alternative to petrol as a fuel for cars. One suggestion is to store the hydrogen in the car as solid magnesium hydride, MgH₂, and generate it as required by heating. Give one advantage of using hydrogen in place of petrol as a fuel for cars. (i) 1 [1]

II Give **one** advantage of storing the fuel in the car in the form of magnesium hydride rather than hydrogen gas. [1]

(ii)	One possible disadvantage of using magnesium hydride arises from its reaction with water.	Examiner only
	$MgH_2(s) + 2H_2O(I) \longrightarrow Mg(OH)_2(s) + 2H_2(g)$	
	Suggest why magnesium hydride's reaction with water could be a problem. [1]	
(iii)	The fuel tank of one type of hydrogen-powered car holds 70 kg of magnesium hydride. Calculate the volume of hydrogen gas, measured at room temperature and pressure,	
	which would be produced if this amount of magnesium hydride reacted with water. [3] [1 mol of gas molecules occupies 24 dm ³ at room temperature and pressure]	
	Volume of hydrogen gas = dm^3	
Meth catal	anol can be produced industrially by passing carbon monoxide and hydrogen over a yst at high temperatures and pressures.	
	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g) \Delta H = -91 \text{ kJ mol}^{-1}$	
(i)	State how the equilibrium yield of methanol is affected by an increase in temperature and in pressure. [1]	
(ii)	Explain your answer to part (i). [2]	

(d)

Examiner only

(e) Many catalysts are very expensive but their use does allow the chemical industry to operate more profitably. Explain why the use of catalysts provides economic and environmental benefits. [3] QWC [1] Total [18]

(1091-01)

Examiner Sodium carbonate can be manufactured in a two-stage process as shown by the following 10. (a) equations. NaCl + NH₃ + CO₂ + H₂O \longrightarrow NaHCO₃ + NH₄Cl $2NaHCO_3 \longrightarrow Na_2CO_3 + H_2O + CO_2$ Calculate the maximum mass of sodium carbonate which could be obtained from 900g of sodium chloride. [3] Maximum mass of sodium carbonate = g (b) Sodium carbonate can form a hydrate, Na₂CO₃.xH₂O. When 4.64 g of this hydrate was heated, 2.12 g of anhydrous Na₂CO₃ remained. State the mass of water in 4.64 g of the hydrate. [1] (i) Calculate the number of moles of sodium carbonate and the number of moles of (ii) water in 4.64 g of the original hydrate. Use these values to calculate the value of x in Na₂CO₃. xH_2O . [2] *x* = **QUESTION 10 CONTINUES ON PAGE 16**

Turn over.

only

- - (iii) Calculate the mass of Na_2CO_3 in the sample.
 - Mass of Na_2CO_3 in sample =g
 - (iv) Calculate the percentage by mass of Na_2CO_3 in the sample. [1]
 - Percentage by mass =%

Total [10]

[1]

Examiner only

Section B Total [70]

END OF PAPER

For continuation only.	Examine only

For continuation only.	Examiner only
-	

For continuation only.	Examiner only

GCE AS/A level

CHEMISTRY – PERIODIC TABLE FOR USE WITH CH1

A.M. THURSDAY, 9 January 2014

	0	4.00 Helium 2	20.2 Neon 10	40.0 Ar Argon 18	83.8 Kr Krypton 36	131 Xe 54	(222) Rn Radon 86				
	2		19.0 F Fluorine 9	35.5 CI Chlorine 17	79.9 Br Bromine 35	127 lodine 53	(210) At Astatine 85		175 Lu -utetium 71	(257) Lr 103	
	9	ock	16.0 O 8	32.1 S Sulfur 16	79.0 Selenium 34	128 Te 52	(210) PO Polonium 84		173 Yb 70	(254) Nobelium L	
	Ŝ	p Bl	p Bl	14.0 Nitrogen	31.0 Phosphorus	74.9 As Arsenic 33	122 Sb Antimony 51	209 Bi 83		169 Tmulium 69	(256) Md Mendelevium 101
	4		12.0 C Carbon 6	12.0 Carbon 6 Silicon 14	72.6 Ge Germanium 32	119 Sn 50	207 Pb Lead 82		167 Er Erbium 68	(253) Fm Fermium 100	
THE PERIODIC TABLE	ო		10.8 B 5	27.0 Al Aluminium 13	69.7 Ga Gallium 31	115 In 1ndium 49	204 TI Thallium 81		165 Ho Holmium 67	(254) ES 99	
				1	65.4 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80	f Block	163 Dy Dysprosium 66	(251) Cf Californium 98	
	Group			d Block	63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79		159 Tb Terbium 65	(245) BK Berkelium 97	
					58.7 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		157 Gd Gadolinium 64	(247) Cm Curium 96	
					58.9 CO Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium		(153) Eu Europium 63	(243) Am Americium 95	
		elative	symbol Z number		55.8 Fe Iron 26	101 Ruthenium 44	190 Os Osmium 76		150 Smarium 62	(242) Pu Plutonium 94	
		Key			d Bl	54.9 Mn Manganese 25	98.9 TC Technetium 43	186 Re Rhenium 75		(147) Promethium 61	(237) Nptunium 93
					52.0 Cr Chromium 24	95.9 Mo Molybdenum 42	184 W Tungsten 74		144 Neodymium 60	238 Uranium 92	
					50.9 V Vanadium 23	92.9 Nb Niobium 41	181 Ta Tantalum 73		141 Praseodymium 59	Protactinium 91	
					47.9 Ti Titanium 22	91.2 Zr Zirconium 40	179 Hf Hafnium 72		Cerium 58	232 Th Thorium 90	
				45.0 Sc 21	88.9 Y 39	139 La Lanthanum 57	(227) Ac b Actinium 89	nthanoid ements	ctinoid ements		
	2	<u>ح</u>	9.01 Be Beryllium	24.3 Mg Magnesium	40.1 Ca Calcium 20	87.6 Sr 38	137 Ba Barium 56	(226) Ra Radium 88	 Lai ele 	ē ▲	
	-	Hydrogen	6.94 Li Lithium	23.0 Na Sodium	39.1 X Potassium	85.5 Rb Rubidium 37	133 Cs 55	(223) Fr 87			
		ariod	N	ς	4	ر ک	9] 			
		പ്	© WJE	C CBAC Ltd.	(1091-0	01A)					

. .